

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 248-251 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 248

Optimizing the library function rand() in C/C++ to increase the

degree of randomness

Pushpam Kumar Sinha
1,*

1
Department of Mechanical Engineering, NetajiSubhas Institute of Technology,Amhara, Bihta, Patna, India

--- ----------

Date of Submission: 08-07-2020 Date of Acceptance: 23-07-2020

--- ----------

ABSTRACT
Almost all the Random Number Generators known

are pseudo-Random Number Generators (pRNG)

because the numbers generated by them are not truly

random but based on recursive use of some

mathematical formulae. The random number

generator I am concerned with in this paper is the

library function rand() employed most prominently

in C/C++. What I do in this work is vary several

constants appearing in the mathematical formulae of

rand() between certain fixed limits and then measure

the relative degree of randomness for each of the

variation. I use the statistical technique of

correlation coefficients, as explained in detail in my

paper [1], to measure the relative degree of

randomness. I find that only for one particular value

of each of these constants, this particular value

being different for different constants, the degree of

randomness for this variation of rand() is the

greatest. Henceforth, what I have achieved in this

work is the optimization of rand(), to come up with

the recursive mathematical formulae giving better

random number generation than the conventional

rand().

KEYWORDS: Optimizing problem, pseudo-

Random Number Generator, Library function,

Correlation Coefficient

I. INTRODUCTION
How do we know that a certain sequence of

numbers that we have generated are random or not ?

There are several tests of randomness available in

literature to do that [2,3,4,5,6]. I have gone a step

ahead in [1] and tell quantitatively how random a

given pseudo-random number generator (pRNG) is,

i.e. with my methodology to test randomness one is

able to measure the relative degree of randomness

when comparative analysis is needed between

severalpRNGs. In order to appreciate the above

statement I will write here briefly about one of the

difficult to pass tests of randomness as given by

Marsaglia and Tsang [6]; and though I have written

in detail about my test of randomness in [1], I will

introduce it here again for the sake of convenience.

Amongst the tests of randomness proposed

by different people [2,3,4,5,6], I will be dealing here

with ‘the gcd test’. In the gcd test, one makes a

random choice of any two numbers, say a and b,

from a sample of supposedly random non-negative

integers. Following are the steps of operations to be

performed with a and b

Step 1: Divide a by b, or b by a. Suppose one

performs a/b, i.e. a is the dividend and b is the

divisor

Step 2: The divisor b in step 1 is the new dividend,

and the remainder of operation in step 1 is the new

divisor

Step 3: Repeat step 2 till the remainder is zero

Let the number of iterations till last step be

k, and the gcd (the divisor in the last step) be g. We

take a large number of combinations of any two

numbers from the sample of supposedly random

non-negative integers in the range {1,2,...,232−1}

and perform the operations outlined in steps 1-3

above, and plot the distribution of k and g. These

distributions, that of k and g, may be compared with

the standard to determine whether a given sample is

random or not. How do we fix the standard for the

distributions of k and g ? If there are a large number

of pRNGs yielding distributions very close to each

other and to one single pRNG, that pRNG may be a

taken as a good random number generator and its

distributions be fixed as standard. However, there is

other option also, that is, to compare the

distributions of k and g with that of the true

distributions for a truly random sample.

There are no known true distributions of k,

but empirical study suggests that the k distribution

for a truly random sample must be normal with

mean = 18.5785 and standard deviation = 3.405.

The true distribution of g is Probability[g = j]= c/𝑗2,

with c = 6/π2. It is clear from the description of the

gcd test that it does not quantify the relative degree

of randomness, but that it qualitatively compares the

distributions of k and g with the standard and or true

and or empirical. Moreover, the test is also

computationally expensive.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 248-251 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 249

 I use in this work the statistical technique

of correlation coefficient to test randomness, which

unlike others [2,3,4,5,6] is not an absolute statement

of randomness but a relative one and that too

quantified [1]. In this method I partition the

sequence of random numbers a[i], (i=1,2,….,2n)

into two data sets x[i] = a[i], (i=1,2,….,n) and y[i] =

a[n+i], (i=1,2,….,n). From these two data sets, the

correlation coefficient r is calculated as

r =
 X Y

 X2 Y2

where X = x[i] -
 x[i]

n
, and Y = y[i] -

 y[i]

n

The correlation coefficient r varies between -1 and

+1. However, in my method I will consider the

absolute value of r. The closer the absolute value of

r is to zero, the more random a particular sequence

of random numbers is, and thus this method is a

quantitative measurement of the relative degree of

randomness.

1.1 The optimizing problem of rand()

rand() is the library function in C/C++ used most

frequently to generate random numbers, i.e. the

integers in the

range 0 to 32767. One of the routines of rand() [7] is

unsigned long int next = 1;

int rand(void)

{

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

Note in the routine above the two constants 65536

and 32768. Seeing these two constants, I have a

natural curiosity: Cannot I vary these two constants,

i.e. play around with them to come up with new

pRNGs different from rand(), and, if I do this which

one amongst them including the conventional rand()

is the most random ? To quench my curiosity, I

modify the line

return (unsigned int)(next/65536) % 32768;

in above routine as

return (unsigned int)(next/den) % range;

where den is an integer which varies from 1 to

65536 in steps of 1 and range is also an integer

which varies from 10001 to 32768 in steps of 1. This

way I generate several new pRNGs, and amongst

these I optimize for the one that has the least value

of r .
 A few of the other random number

generators available in literature are [8, 9, 10].

II. THE COMPUTER PROGRAM
2.1 The Computer Program for variable range and

fixed den

 The computer program in C++ for the

above mentioned optimization problem for rand()

for den = 65536 and range varying from 10001 to

32768 in steps of 1 is

#include <iostream>

#include <stdlib.h>

#include <math.h>

using namespace std;

int main()

{

unsigned long int next = 1, a[200001],

x[100001],y[100001];

unsigned long int range[25000];

inti,ii,j;

double sum1=0.0,sum2=0.0,sum3=0.0;

doublexavg,yavg;

double r[25000],smallest=1.0;

for(ii=1;ii<=22768;ii++)

{

range[ii]=10001+(ii-1);

next=1;

for(i=1;i<=200000;i++)

{

next = next * 1103515245 + 12345;

a[i]= (unsigned int)(next/65536) % range[ii];

}

for(j=1;j<=100000;j++)

{

x[j]=a[j];

y[j]=a[100000+j];

sum1=sum1+x[j];

sum2=sum2+y[j];

}

xavg=sum1/100000.0;

yavg=sum2/100000.0;

sum1=0.0;

sum2=0.0;

sum3=0.0;

for(j=1;j<=100000;j++)

{

sum1 = sum1+(x[j]-xavg)*(y[j]-yavg);

sum2 = sum2+pow(x[j]-xavg,2);

sum3 = sum3+pow(y[j]-yavg,2);

}

r[ii] = fabs(sum1/sqrt(sum2*sum3));

cout<<endl<<" r["<<ii<<"] = "<<r[ii];

sum1 = 0.0;

sum2 = 0.0;

sum3 = 0.0;

}

for(ii=1;ii<=22768;ii++)

{

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 248-251 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 250

if(r[ii]<smallest) smallest = r[ii];

}

cout<<endl<<" smallest="<<smallest;

for(ii=1;ii<=22768;ii++)

{

if(smallest == r[ii])cout<<endl<<" ii="<<ii<<"

range="<<range[ii];

}

return 0;

}

2.2 The Computer Program for variable den and

fixed range

 Note that the variation of den from 1 to

65536 in steps of 1 has been partitioned into two

(because of memory limitation to store large sized

arrays), variation from 1 to 40000 in steps of 1 and

that from 40001 to 65536 in steps of 1. The

computer program in C++ for the above mentioned

optimization problem for rand() for range = 32768

and den varying from 40001 to 65536 in steps of 1

is

#include <iostream>

#include <stdlib.h>

#include <math.h>

using namespace std;

int main()

{

unsigned long int next = 1, a[200001],

x[100001],y[100001];

unsigned long int denominator[30000];

inti,ii,j;

double sum1=0.0,sum2=0.0,sum3=0.0;

doublexavg,yavg;

double r[30000],smallest=1.0;

for(ii=1;ii<=25536;ii++)

{

denominator[ii]=40000+ii;

next=1;

for(i=1;i<=200000;i++)

{

next = next * 1103515245 + 12345;

a[i]= (unsigned int)(next/denominator[ii]) % 32768;

}

for(j=1;j<=100000;j++)

{

x[j]=a[j];

y[j]=a[100000+j];

sum1=sum1+x[j];

sum2=sum2+y[j];

}

xavg=sum1/100000.0;

yavg=sum2/100000.0;

sum1=0.0;

sum2=0.0;

sum3=0.0;

for(j=1;j<=100000;j++)

{

sum1 = sum1+(x[j]-xavg)*(y[j]-yavg);

sum2 = sum2+pow(x[j]-xavg,2);

sum3 = sum3+pow(y[j]-yavg,2);

}

r[ii] = fabs(sum1/sqrt(sum2*sum3));

cout<<endl<<" r["<<ii<<"] = "<<r[ii];

sum1 = 0.0;

sum2 = 0.0;

sum3 = 0.0;

}

for(ii=1;ii<=25536;ii++)

{

if(r[ii]<smallest) smallest = r[ii];

}

cout<<endl<<" smallest="<<smallest;

for(ii=1;ii<=25536;ii++)

{

if(smallest == r[ii]) cout<<endl<<"

denominator="<<denominator[ii];

}

return 0;

}

III. RESULTS AND CONCLUSION
All the results are for sequence of generation of

200000 random numbers.

The result for computer program in section

2.1 is optimized range = 31700, and the value of r
for this range is 2.49623x10−8. For a computer

program similar to that in section 2.2 but with den

varying from1 to 40000 in steps of 1, the result is

optimized den = 20193, and the value of r for this

den is 1.6376x10−8. The result for computer

program in section 2.2 is optimized den = 56928,

and the value of r for this den is 1.19703x10−7.

For a computer program similar to that in section

2.2 but with den varying from 1 to 40000 in steps of

1 and a previously found optimized range of 31700,

the result is optimized den = 20868, and the value of

 r for this den is 1.64894x10−7. For a computer

program similar to that in section 2.2 but with a

previously found optimized range of 31700, the

result is optimized den = 65536, and the value of r
for this den is 2.49623x10−8. For a computer

program similar to that in section 2.1 but with a

previously found optimized den of 20193, the result

is optimized range = 32768, and the value of r for

this range is 1.6376x10−8.

 From above results I conclude that the

randomness is the greatest for den = 20193 and

range = 32768. Henceforth, the routine for the

library function rand() in C/C++ gets modified (to

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 248-251 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 251

yield the sequence of numbers with the greatest

randomness) as

unsigned long int next = 1;

int rand(void)

{

next = next * 1103515245 + 12345;

return (unsigned int)(next/20193) % 32768;

}

REFERENCES
[1]. Sinha PK, Sinha S. The better pseudo-random

number generator derived from the library

function rand() in C/C++. I.J. Mathematical

Sciences and Computing 2019; 4:13-23.

[2]. Knuth Donald E. The Art of Computer

Programming. Volume II. 3
rd

 ed. Reading

Mass.: Addison Wesley; 1998

[3]. MacLaren D,Marsaglia G. Uniform random

number generators. Journ. Assoc. for

Computing Machinery 1965; 12: 83–89.

[4]. Marsaglia G. A current view of random

number generators. Keynote Address.

Statistics and Computer Science: XVI

Symposium on the Interface. Atlanta

Proceedings 1985. Elsevier.

[5]. The Marsaglia Random Number CDROM,

with The Diehard Battery of Tests of

Randomness, produced at Florida State

University under a grant from The National

Science Foundation 1985. Access available at

www.stat.fsu.edu/pub/diehard.

[6]. Marsaglia G, Tsang WW. Some difficult-to-

pass tests of randomness. Journal of

Statistical Software 2002; Vol 7: Issue 3.

[7]. Kernighan Brian W, Ritchie Dennis M. The

C Programming Language. 2
nd

ed. New Delhi:

Pearson-Prentice Hall; 1988.

[8]. Park SK, Miller KW. Commun, ACM 1988;

31: 1192-1201

[9]. Press WH,Teukolsky SA. Portable random

number generators. Comput. Phys. 1992; 6:

521-524

[10]. Marsaglia G,Zaman A. Some very-long-

period portable random number generators.

Computers in Physics 1995; 8: 117–121.

http://www.stat.fsu.edu/pub/diehard

