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ABSTRACT 
Almost all the Random Number Generators known 

are pseudo-Random Number Generators (pRNG) 

because the numbers generated by them are not truly 

random but based on recursive use of some 

mathematical formulae. The random number 

generator I am concerned with in this paper is the 

library function rand() employed most prominently 

in C/C++. What I do in this work is vary several 

constants appearing in the mathematical formulae of 

rand() between certain fixed limits and then measure 

the relative degree of randomness for each of the 

variation. I use the statistical technique of 

correlation coefficients, as explained in detail in my 

paper [1], to measure the relative degree of 

randomness. I find that only for one particular value 

of each of these constants, this particular value 

being different for different constants, the degree of 

randomness for this variation of rand() is the 

greatest. Henceforth, what I have achieved in this 

work is the optimization of rand(), to come up with 

the recursive mathematical formulae giving better 

random number generation than the conventional 

rand(). 

KEYWORDS: Optimizing problem, pseudo-

Random Number Generator, Library function, 

Correlation Coefficient 

 

I. INTRODUCTION 
How do we know that a certain sequence of 

numbers that we have generated are random or not ? 

There are several tests of randomness available in 

literature to do that [2,3,4,5,6]. I have gone a step 

ahead in [1] and tell quantitatively how random a 

given pseudo-random number generator (pRNG) is, 

i.e. with my methodology to test randomness one is 

able to measure the relative degree of randomness 

when comparative analysis is needed between 

severalpRNGs. In order to appreciate the above 

statement I will write here briefly about one of the 

difficult to pass tests of randomness as given by 

Marsaglia and Tsang [6]; and though I have written 

in detail about my test of randomness in [1], I will 

introduce it here again for the sake of convenience.  

Amongst the tests of randomness proposed 

by different people [2,3,4,5,6], I will be dealing here 

with ‘the gcd test’. In the gcd test, one makes a 

random choice of any two numbers, say a and b, 

from a sample of supposedly random non-negative 

integers. Following are the steps of operations to be 

performed with a and b 

Step 1: Divide a by b, or b by a. Suppose one 

performs a/b, i.e. a is the dividend and b is the 

divisor 

Step 2: The divisor b in step 1 is the new dividend, 

and the remainder of operation in step 1 is the new 

divisor 

Step 3: Repeat step 2 till the remainder is zero 

Let the number of iterations till last step be 

k, and the gcd (the divisor in the last step) be g. We 

take a large number of combinations of any two 

numbers from the sample of supposedly random 

non-negative integers in the range {1,2,...,232−1} 

and perform the operations outlined in steps 1-3 

above, and plot the distribution of k and g. These 

distributions, that of k and g, may be compared with 

the standard to determine whether a given sample is 

random or not. How do we fix the standard for the 

distributions of k and g ? If there are a large number 

of pRNGs yielding distributions very close to each 

other and to one single pRNG, that pRNG may be a 

taken as a good random number generator and its 

distributions be fixed as standard. However, there is 

other option also, that is, to compare the 

distributions of k and g with that of the true 

distributions for a truly random sample.  

There are no known true distributions of k, 

but empirical study suggests that the k distribution 

for a truly random sample must be normal with 

mean = 18.5785 and standard deviation = 3.405. 

The true distribution of g is Probability[g = j]= c/𝑗2, 

with c = 6/π2. It is clear from the description of the 

gcd test that it does not quantify the relative degree 

of randomness, but that it qualitatively compares the 

distributions of k and g with the standard and or true 

and or empirical. Moreover, the test is also 

computationally expensive.  
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 I use in this work the statistical technique 

of correlation coefficient to test randomness, which 

unlike others [2,3,4,5,6] is not an absolute statement 

of randomness but a relative one and that too 

quantified [1]. In this method I partition the 

sequence of random numbers a[i], (i=1,2,….,2n) 

into two data sets x[i] = a[i], (i=1,2,….,n) and y[i] = 

a[n+i], (i=1,2,….,n). From these two data sets, the 

correlation coefficient r is calculated as 

r =  
 X Y

  X2  Y2
 

where X = x[i] -
 x[i]

n
, and Y = y[i] - 

 y[i]

n
 

The correlation coefficient r varies between -1 and 

+1. However, in my method I will consider the 

absolute value of r. The closer the absolute value of 

r is to zero, the more random a particular sequence 

of random numbers is, and thus this method is a 

quantitative measurement of the relative degree of 

randomness.  

 

1.1 The optimizing problem of rand() 

 

rand() is the library function in C/C++ used most 

frequently to generate random numbers, i.e. the 

integers in the  

range 0 to 32767. One of the routines of rand() [7] is 

unsigned long int next = 1; 

int rand(void) 

{ 

next = next * 1103515245 + 12345; 

return (unsigned int)(next/65536) % 32768; 

} 

Note in the routine above the two constants 65536 

and 32768. Seeing these two constants, I have a 

natural curiosity: Cannot I vary these two constants, 

i.e. play around with them to come up with new 

pRNGs different from rand(), and, if I do this which 

one amongst them including the conventional rand() 

is the most random ? To quench my curiosity, I 

modify the line 

return (unsigned int)(next/65536) % 32768; 

in above routine as 

return (unsigned int)(next/den) % range; 

where den is an integer which varies from 1 to 

65536 in steps of 1 and range is also an integer 

which varies from 10001 to 32768 in steps of 1. This 

way I generate several new pRNGs, and amongst 

these I optimize for the one that has the least value 

of  r . 
 A few of the other random number 

generators available in literature are [8, 9, 10]. 

 

 

 

II. THE COMPUTER PROGRAM 
2.1 The Computer Program for variable range and 

fixed den 

 The computer program in C++ for the 

above mentioned optimization problem for rand() 

for den = 65536 and range varying from 10001 to 

32768 in steps of 1 is 

#include <iostream> 

#include <stdlib.h> 

#include <math.h> 

using namespace std; 

 

int main() 

{ 

unsigned long int next = 1, a[200001], 

x[100001],y[100001]; 

unsigned long int range[25000]; 

inti,ii,j; 

double sum1=0.0,sum2=0.0,sum3=0.0; 

doublexavg,yavg; 

double r[25000],smallest=1.0; 

for(ii=1;ii<=22768;ii++) 

{ 

range[ii]=10001+(ii-1); 

next=1; 

for(i=1;i<=200000;i++) 

{ 

next = next * 1103515245 + 12345; 

a[i]= (unsigned int)(next/65536) % range[ii]; 

} 

for(j=1;j<=100000;j++) 

{ 

x[j]=a[j]; 

y[j]=a[100000+j]; 

sum1=sum1+x[j]; 

sum2=sum2+y[j]; 

} 

xavg=sum1/100000.0; 

yavg=sum2/100000.0; 

sum1=0.0; 

sum2=0.0; 

sum3=0.0; 

for(j=1;j<=100000;j++) 

{ 

sum1 = sum1+(x[j]-xavg)*(y[j]-yavg); 

sum2 = sum2+pow(x[j]-xavg,2); 

sum3 = sum3+pow(y[j]-yavg,2); 

} 

r[ii] = fabs(sum1/sqrt(sum2*sum3)); 

cout<<endl<<"  r["<<ii<<"] = "<<r[ii]; 

sum1 = 0.0; 

sum2 = 0.0; 

sum3 = 0.0; 

} 

for(ii=1;ii<=22768;ii++) 

{ 
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if(r[ii]<smallest) smallest = r[ii]; 

} 

cout<<endl<<" smallest="<<smallest; 

for(ii=1;ii<=22768;ii++) 

{ 

if(smallest == r[ii])cout<<endl<<" ii="<<ii<<"  

range="<<range[ii]; 

} 

return 0; 

} 

 

2.2 The Computer Program for variable den and 

fixed range 

 Note that the variation of den from 1 to 

65536 in steps of 1 has been partitioned into two 

(because of memory limitation to store large sized 

arrays), variation from 1 to 40000 in steps of 1 and 

that from 40001 to 65536 in steps of 1. The 

computer program in C++ for the above mentioned 

optimization problem for rand() for range = 32768 

and den varying from 40001 to 65536 in steps of 1 

is 

#include <iostream> 

#include <stdlib.h> 

#include <math.h> 

using namespace std; 

 

int main() 

{ 

unsigned long int next = 1, a[200001], 

x[100001],y[100001]; 

unsigned long int denominator[30000]; 

inti,ii,j; 

double sum1=0.0,sum2=0.0,sum3=0.0; 

doublexavg,yavg; 

double r[30000],smallest=1.0; 

for(ii=1;ii<=25536;ii++) 

{ 

denominator[ii]=40000+ii; 

next=1; 

for(i=1;i<=200000;i++) 

{ 

next = next * 1103515245 + 12345; 

a[i]= (unsigned int)(next/denominator[ii]) % 32768; 

} 

for(j=1;j<=100000;j++) 

{ 

x[j]=a[j]; 

y[j]=a[100000+j]; 

sum1=sum1+x[j]; 

sum2=sum2+y[j]; 

} 

xavg=sum1/100000.0; 

yavg=sum2/100000.0; 

sum1=0.0; 

sum2=0.0; 

sum3=0.0; 

for(j=1;j<=100000;j++) 

{ 

sum1 = sum1+(x[j]-xavg)*(y[j]-yavg); 

sum2 = sum2+pow(x[j]-xavg,2); 

sum3 = sum3+pow(y[j]-yavg,2); 

} 

r[ii] = fabs(sum1/sqrt(sum2*sum3)); 

cout<<endl<<"  r["<<ii<<"] = "<<r[ii]; 

sum1 = 0.0; 

sum2 = 0.0; 

sum3 = 0.0; 

} 

for(ii=1;ii<=25536;ii++) 

{ 

if(r[ii]<smallest) smallest = r[ii]; 

} 

cout<<endl<<" smallest="<<smallest; 

for(ii=1;ii<=25536;ii++) 

{ 

if(smallest == r[ii]) cout<<endl<<" 

denominator="<<denominator[ii]; 

} 

return 0; 

} 

 

III. RESULTS AND CONCLUSION 
All the results are for sequence of generation of 

200000 random numbers.  

The result for computer program in section 

2.1 is optimized range = 31700, and the value of  r  
for this range is 2.49623x10−8. For a computer 

program similar to that in section 2.2 but with den 

varying from1 to 40000 in steps of 1, the result is 

optimized den = 20193, and the value of  r  for this 

den is 1.6376x10−8. The result for computer 

program in section 2.2 is optimized den = 56928, 

and the value of  r  for this den is 1.19703x10−7. 

For a computer program similar to that in section 

2.2 but with den varying from 1 to 40000 in steps of 

1 and a previously found optimized range of 31700, 

the result is optimized den = 20868, and the value of 

 r  for this den is 1.64894x10−7. For a computer 

program similar to that in section 2.2 but with a 

previously found optimized range of 31700, the 

result is optimized den = 65536, and the value of  r  
for this den is 2.49623x10−8. For a computer 

program similar to that in section 2.1 but with a 

previously found optimized den of 20193, the result 

is optimized range = 32768, and the value of  r  for 

this range is 1.6376x10−8. 

 From above results I conclude that the 

randomness is the greatest for den = 20193 and 

range = 32768. Henceforth, the routine for the 

library function rand() in C/C++ gets modified (to 
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yield the sequence of numbers with the greatest 

randomness) as 

unsigned long int next = 1; 

int rand(void) 

{ 

next = next * 1103515245 + 12345; 

return (unsigned int)(next/20193) % 32768; 

} 
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